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1 Introduction

In this note we deal with the driven pendulum, its variants and an application
to accelerators. We are mostly interested in describing some analytic and
perturbative solutions that can be obtained relatively easily and can be used
as a guide in a more complete study of the driven pendulum. In a sense this
note contains all the ”standard” pendulum formulas and can be used as a
reference or starting point for future work. We also added an appendix on
elliptic integrals and elliptic functions that are extremely useful in the study
of nonlinear problems.

One of the issues of critical importance in accelerator physics applications
is the knowledge of the boundary that separates regular and chaotic motion.
The reason for this is very simple and rather obvious. When particles are in
the chaotic region their dynamics is erratic and ultimately escape to infinity.
Since the pendulum study is very closely related to the dynamics of particles
in an accelerator|1] it is essential to know the location of the surface in phase
space that separates different types of pendulum dynamics. In this note we
derive some results that are related to the possible types of pendulum mo-
tion as a function of driving frequency and amplitude. In particular a new



formula is obtained for the boundary that separates regular and stochastic
pendulum motion. This expression, calculated to lowest order in the pendu-
lum amplitude, improves on a similar expression given in ref. [1]. The latter
is strictly valid in the linearized pendulum whereas we arrive at the former
without linearizing the equation of motion. We also present numerical results .
that show preliminary agreement with these ideas.

We use the following equ#tion of motion:

% + wo?siny = esin(t), (1)
where wy is the frequency of small oscillations, 2 is the driving frequency and
¢ is the amplitude of the driving torque. This equation appears in nonlinear
beam dynamics situations with time dependent perturbations. In that con-
text the parameters in Eq. (1) are related to quantities in the real accelerator.
Following Peggs[1], we have (near a fifth order resonance):

Y = 5¢, (2)

wo = 27Q)y, (3)

1 =27Qupm, (4)
€= 5(27)%qQm, (5)

with @ the tune of the mashine. For more details on how these realations
arise, see reference [1).

2 Small-angle nonlinear dynamics

For very small angles the driven pendulum equation reduces to the equation
of a harmonic oscillator with natural frequency wp. In this case we have
the well known phenomenon of resonance, viz. when the external driving
frequency § is equal to wp the oscillator amplitude diverges. This diverg-
ernce is an artifact of the approximation. For, let us assume that we place
initially the pendulum at a very small angle and drive it at the frequency
) = wp with small driving amplitudes e. Then, since the angle is small, the
pendulum responds in a resonant fashion to the external force and the angle
¥(t) increases rapidly. As this happens however, the pendulum experiences
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the nonlinear parts of its periodic potential and the diverging motion is sup-
pressed. This suppression is caused by the changes in the force as a function
of angle. We thus expect the following motion for the pendulum: At first,
small oscillations with increasing amplitude. As we pass beyond the linear
regime the rate of increase of the amplitude decreases and finally stops. The
pendulum then, under the action of gravity rolls” back towards the equilib-
rium point with increasing rate in the amplitude decreases. As it reaches the
linear regime, it feels again the resonating driving frequency and the cycle
repeats itself.

From the qualitative discussion we see that the phenomenon of resonance
is far more complicated in a nonlinear system than in a linear one. One
immediate conclusion is that a shift is expected in the resonance frequency
in the nonlinear case for very small driving amplitudes e. We expect this
shift to be towards smaller frequencies, i.e. the nonlinear resonance occurs
at the driving frequency 9,., with §,., < w. The reason for the shift in this
direction is the following: Assume that the nonlinear pendulum motion that
is bounded between angles —F < 19 < % can be described by 2 corresponding
quadratic renormalized potential. The resonant frequency for this oscillator
would be
siny

L
The renormalization coefficient & takes into account in some average way the
nonlinearity of the potential. The function sinz/z is a decreasing function
in the range we are interested in. Were we to assume linear distribution in z
with a reasonable cutoff for the linear regime, i.e. ., >~ 0.52 corresponding
to an angle of 30°, then

Nres = Wyflren = woy /< > (6)

sinze
z

Ken = > c08(Teut) = 0.930 (7)

This then shows that the new resonant frequency occurs typically for smaller
frequencies than wo.

In the remaining of this section we will explore some useful aspects of an
approximate yet nonlinear equation for the motion of the pendulum. First
we will study the pendulum with no driving force and then we will apply
some of the intuition and results obtained to the driven pendulum.
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2.1 Approximate solutions

- When € = 0, Eq. (1) reduces to the equation for a free pendulum. The physi-
cal characteristics of the solution depend on the total energy of the pendulum,
i.e. depends on the intial conditions. For small amplitude oscillations the
_ sin-function can be approximated by sin(1) = v and the pendulum executes
small oscillations with constant frequency wo independent of the (small) am-
plitude. For larger inital amplitudes (or total energy) this approximation is
no longer valid. Let us go to the next order term in the expanssion, viz.

3

aim/) ~ ¢ - -3—!-. (8)
We now have the following nonlinear equation of motion:
d*y 3
il +uwp($p— =) =0 (9)

This is nothing but the equation of motion for a classical pértic]e moving
" with rescaled time 7 = wyt in an inveried double well potential given by

v =2 - L (10)

Note that the zeros of V(%) are at ,ero = 0 (double) and .00 = /12 =
+3.46410 and there is 2 maximum at Ymar = +v6 x +2.44949. Since ¢ is an
angle measured in radians the value 3., corresponds to an angle of approx-
imately 140.35°. Clearly, for intial angles as large as 140° the approximation
breaks down and the motion in the approximate equation becomes unstable.
In fact, to be on the safe side, we should not really use the approximate non-
linear equation for parts of the potential where the curvature is negative. The
second derivative of the potential changes sign at ¥, = /2 =~ $1.41421
corresponding to an angle of 81.028°. Thus our approximate equation is
good, roughly speaking, for the range —80° < ¢ < +80°. Now we control
fully the regime of validity of our approximations we can go on and attempt
solving the approximate equation.

To simplify matters, we will fix the initial conditions. Let us assume that
we initially displace the particle by ¥, and then simply "drop” it with no



initial momentum, i.e. take 9}, = po = 0. The particle (or pendulum) will
then execute oscillations between —3, and ¢, with time evolution given by

$P(t) = a cos(wt) + azcos(3wt) + --- (11)

where the frequency w depends on wo and the initial conditions. If we now |
substitute Eq. (11) in the differential equation of Eq. (9) and keep only the
fundamental and the first harmonic we get to lowest order:

3 1
w’ = woz[l - -21612 - Zﬂs’], : (12)
1 1
TSy (13)

Assume an intial angle of approximately 60°, i.e. 4o =~ 1. Since this choice
does not represent large deviations from the linear regime we will take initially
a; = o = 1 and a3z >~ 0. Substituting these numbers in Egs. (12), (13) we
have w =~ 0.935wo and a3 >~ —5.6 x 10~3. Using the new value for a3, we
obtain a, =~ 0.9944, giving a ratio between the amplitudes of the harmonics
equal to a;/az ~ 177. We observe that the new "resonant” frequency shifts to
the "red” and that more harmonics appear yet with much smaller strength.

2.2 Exact solutions

We now come to the exact solution of Eq. (9). We define 7 = wot, multiply
both sides of the equation with 1 and integrate once; we get

¢,4

EEr+v-L =c, (19)
4
C,,=po+¢o’—1b1-°2— (15)

where po, %o correspond to the initial momentum and angle respectively.
To simplify the calculations we will take pp = 0. We now define two new
quantities:

2
,\’=1—%, (16)
, 1-3 %
k? = = nif_’ (17)
1-3%3



and denote w = v/1p. After some algebra the equation of motion in Eq.
(14) simplifies considerably. We get

( )2 =(1-v")(1-Fv’) (18)
or equivalently
w w
/ —_—_— = ) (19)
r /(1 -w?)(1 - kKuwt)
The elliptic integral on the left hand side of the equation defines the inverse
of the sn Jacobian elliptic function with argument w + K and modulus k.
K = K(k) is the complete elliptic integral of the first kind with the same

modulus. Equivalently, the solution can be written in terms of the ed elliptic
function since:[2]

cn(u, k)

sn(u + K,k) = cd(u, k) = -d_n(Tic_) (20)
Finally the solution of Eq. (14) is given by
pY N
$r) = docd3r, ) = oo (1)

with A and k defined in Eq. (16). The Jacobian elliptic functions that
describe the motion of the pendulum are periodic functions. In particular,
the (real) period of cd is 4K.

Of interest o us here is also the Fourier spectrum of the pendulum motion.
Since elliptic funtions are periodic, they can be expanded in Fourier series.
In the case of the cd Jacobian function we ha‘ve[2]

cd(u, k) = Z (- l)n cos[(2n + 1)2K’ (22)

g= ezp[—r%] (23)

where K' = K(k') = K(+/1 — k?) and gis called the nome. In the pendulum
case, the new frequencies are given by

w2n+l = (211. + 1)2K(k) (24)



Using standard tables for elliptic integrals we can evaluate the first few fre-
quencies and their relative strengths. We have for the new fundamental

w; & 0.935w, (25)

Note that this is identical to the new frequency value obtained previously
using an epproximate approach. The relative strength of the first two lines is
approximately a;/a; = 170 for initial amplitudes 3 = 1, compatible with the
approximate results. The frequency spacing between Fourier lines depends
on the initial conditions. In fact it decreases rapidly as the intial amplitude
increases. As this happens the potential becomes more nonlinear and higher
harmonics are necessary for a satisfactory description of the motion.(3]

2.3 Driven motion

We now come to the study of the equation with cubic nonlinearity driven by
the periodic force. The equation of motion is

&’y

dr
It describes a large range of possible dynamic evolution. Since we ultimately
want to study sidebands in the accelerator we are mostly interested in solu-
tions where the free oscilltions are not important. We thus look for solutions
of the type

+ wp’(iﬁ - ¢-6—3) = esin({t). (26)

P(t) = asin(t) (27)

Substituting Eq. (27) into Eq. (26) and keeping only the lowest order terms
we arrive at the following compatibility equation

~ a(@) + awy”[1 - %] = ¢ (28)

This equation essentially describes a nonlinear resonance. Note that if the
nonlinear term was absent from Eq. (26), the equation above would give
the amplitude of oscillatory motion as & function of driving amplitude and
frequency. In this case, when = wo the amplitude diverges and we have a
(linear) resonance.

There is a variety of things we can learn from E. (28). For now, we restrict
our attention to only one: For a given amplitude a we can find the critical
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line that separates stable periodic motion for that amplitude (or less) and
unstable motion. In particular, we obtain the frequency shift of the resonant
point as € — 0. It is given by

@ = we?[(1 - 2o?)] (29)

Clearly, when o is very small, there is no frequency shift. As the amplitude
becomes larger we have a red frequency shift. For instance for a = 1 we get
once again  ~ 0.935wy. In Fig. 1 we plot € vs Q for a =1 (Fig. 1a), a =2
(Fig. 1b) and compare it with the linear result (dotted line)[1].

3 Exact nonlinear dynamics and resonances

We now turn to the full scale study of the pendulum for arbitrary amplitudes
and no approximations in the equation of motion. The approximate solutions
of the previous section are a useful guidance and they are certainly valid for
reasonably small initial conditions. For ¢ = 0 we get an equation which is
exactly solvable in terms of elliptic functions. Unlike the small amplitude
solution of section (2.2) this solution is & bit more complicated. This is be-
cause the pendulum now executes rotations in addition to oscillations. The
rotations are superimposed to the free oscillations around the stable equilib-
rium point. A Fourier analysis of this solution shows an infinite number of
lines, much like in the cubic case, superimposed to the running solutions.

The driven case is the most interesting one. There is a wealth of possible
dynamics: oscillations with the driving frequency, rotations with a multiple of
this frequency, chaotic transitions from one type of motion to the other, etc.
It is not quite easy to clasify all the types of motion, even in an approximate
fashion withough the use of digital simulations. In the remainder of this note
we will do the following: First we solve the non-driven pendulum via elliptic
functions and analyze the types of motion as well as the Fourier spectrum of
the solution. We then try to find driven solutions to the pendulum. In doing
that we obtain an equation similar to that of section (2.3) which we will use
as the lowest order nonlinear approximant to the boundary that separates
regular from stochastic regions. We will also present some simulation results
that suport and put bounds to these results.



3.1 Exact free pendulum dynamics

The non-driven pendulum equation is

f‘f + sinyp =0 (30)

where 7 = wyt. We find the solution in steps: Introduce 2 new dependent
variable 8 through:

P =20 (31)
Using the trigonometric identity for the double angle and multiplying both
sides of the equation by b= dé/dr we get

06 = —6sinbcost (32)

or equivalently

2 k? — 20 3
33 (0 = 3Lk~ sine) (33)
with k? a constant of integration. For simplicity we now take the intial
momentum to be zero. We thus have k? = sin?6, and afier integration we

obtain

(0 = k* — sin8 (34)
Next change to y = sinf and Eq. (34) becomes
v =(-y’)1-9°) (35)

Finally call w the ratio of y/k, viz. w = y/k and we end up with an equation
essentially identical to Eq." (18):

/"’ dw _
1 /(- w?)(1 - BPw)

(36)

The solution to this equation is the ed- Jacobian elliptic function (Eg. (20))
with argument 7 and modulus k. It is now a simple matter to write the solu-
tion in terms of the original vatiables. After "undoing” the transformations
we get:

¥(t) = 2arcsinlkcd(wot, k)], | (37)
k= .sm22 (38)



This is then the exact solution for the pendulum equation. For small initial

amplitudes it reduces to the solution given in Eq. (21). Since our system is

conservative and we assumed po = 0 the angle in the solution above does not

exceed 2x. It is relatively straigthforward to write the solution for ¥)(r =
0) = po # 0 but ¥(r = 0) = 1o = 0. We have in this case

¥(t) = 2arcsin[ksn(wot, k)), : (39)

k=po (40)

H k? > 1 we can use the identity ksn(u,k) = sn(ku,1/k) to obtain a more
appropriate form for the solution:

¥(t) = 2amipoont, —] (41)

A Fourier analysis of the last equation leads to[2]

'n+l

¥(t)= T +4 'g o3 1)[1 el D3h (42)
U = powpl, (43)

1
k= (44)

and ¢ is the nome. The new frequencies of the oscillating part of the solution
are
w,=(n+ 1) ( )powo (45)

Let us do a numerical example: For po = 1.1 (rotations) we get
wo' = 8.05w, (46)

as well as higher harmonics which are multiples of the new fundamental.

3.2 Driven pendulum

We finally come to the case of the driven pendulum with no approximations
but no exact solutions either. It is well known that we now can have extreme
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sencitivity on initial conditions or chaos. In this section we will attept the
following tasks: Obtain approximate driven solutions in the spirit of section
(2.3) and compare these perturbative yet analytic results with numerical
simulations. The numerical integration of the driven pendulum is done in

the code DPEND. |

We need to know when driven pendulum motion with frequency identical
to the driving frequency is possible. This can be found if we look for solutions

of Eq. (1) of the form
Y(t) = aain(ﬂt) (47)

Solutions of this simple form can only be approximate ones since when we
substitute Eq. (47) to Eq. (1) higher order odd harmonics appear. This
follows easily from the identity[4]

o0
sinfasin()) = 2 Jarsa(a)sin|(2k + 1)1 (48)
k=0
where J,(z) is a Bessel function of first kind. As a rule of thumb the values
of these functions are very small for > v. Since the maximum possible
value of the angle a is of order * ~ 3 in the case of oscillations, we can
safely ignore all but the first term in the sum. We thus have the following
compatibility condition, analogous to Eq. (28):

—af? + 2Jy(a)we’ = € (49)
Note that Eq. (28) can be regained for small a since Ji(a) >~ a/2 - a®/16.

The compatibility equation can be used in various ways: For given driving
amplitude € and frequency Q2 we can determine maximum phase a. That can
be done by numerically finding the roots of the equation. This maximum
value for the oscillation should signal the transition from a periodic regime
and thus a closed pendulum orbit to non periodic and presumably chaotic
motion. This transition cannot be abrupt since the equation derived above
is only an approximate one. However it should provide with a reasonably
good estimate for the transition region. In addition, we can also determine
the relationship between driving amplitudes and frequencies for various a’s.

Since the main motivation of this analysis is to study the effect of periodic
current fluctuations near an n-th order resonance in an accelerator we prefer
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to turn now to the accelerator case. In the next section we will translate
all our variables for the case of a fifth order resonance, write the analytical
predictions in this language and test them against numerical simulations

4 Order and chaos in the accelerator

We are now in the position to discuss some preliminary tests of the theory.
The numerical results are obtained with the code DPEND that integrates the
differential equation of Eq. (1) or the corresponding mapping that derives
from it. For our purposes we assume that these two discriptions are equiva-
lent. Clearly there are cases where the differential equation approach is not
a good approximation for an accelerator physics application but our case is
not one of them. Since more complete results will be reported elsewhere, we
restrict ourselves here in performing the following two tasks: First we test
the predictions for the location of the nonlinear resonances for small driving
amplitudes. This is accomplished through the study of the Poincaré surfaces
of section which in our case are strobe plots. Second, we use a similar ap-
proach in order to test the validity of the equation for the boundary derived
in section (3.2). In terms of the accelerator quantities given in Eqgs. (2)-(4),
Eq. (49) is

qw = %[-—aw' + 2J:1(a)], (50)
=9
w= 0; (51)

Note that w is now the ratio of the driving frequency to the tune of the
accelerator. The factor 5 in the denominator on the rhs of Eq. (50) is
indicative of the order of the resonancell].

4.1 Nonlinear resonances

We take the noninteger part of the tune to be Q7 = 0.0053. Based on the
theoretical results we expect for small enough ¢’s the first resonance to be
redshifted to w >~ 0.93 or Qpr ~ 4.9 % 10~3. The second resonance is weaker
and appears at w = 2.80 or Qar = 1.3 x 1072, These figures change slightly

12



to smaller values if we make use of the amplitude dependent equation above
(Eq. (50)). For instance for a ~ 2 we get Qp =~ 4.6 x 1073,

In Figs. 2, 3 we present a series of strobe plots for a small number of
intial conditions (fifteen in total) that launch the pendulum initially with
different angles but zero initial momentum. We vary the driving frequency
Q@ in 2 small region around the tune (Fig. 2) and near the next resonant
frequency (Fig. 3). Note that the stochastic or chaotic layer appears first
near the separatrix. The value for the driving amplitude is fixed and equal
to ¢ = 1.0 x 1074, This is about an order of magnitude less than the critical
value. In the succession of plots in Fig. 2 we see a continuous shrinking of the
available regular phase space as the driving frequency increases. Note that
there is a minimum in the available phase space at about Qa =~ 4.5 x 10-3.
In the neigbourhood of this point ithe pendulum experiences a nonlknear
resonance in good agreement with the theoretical prediction. We also observe
a distortion in the regular trajectories that correspond to traces of KAM
surfaces. This distortion is a result of our bad choise of variables since the
proper study is done in an action-angle space. We also observe agreement
with the theory in Fig. 3, although there the strength of the resonance is
much lower.

4.2 Separating boundaries

The equation for the boundary that separates regular and chaotic motion is
given by Eq. {50). In Fig. 4 we plot the driving torque g as a function of
w, the ratio of the driving frequency to the tune of the mashine. In Fig. 4a
we have a log-log plot with a = 2. In Figs. 4b, ¢, d we have a = 1,2,3
respectively in semilog plots. In these figures the continuous line represents
Egq. (50) wherease the dotted line its linearized version[1]. The chaotic regime
is in the upper right hand side of the corresponding curves. Note that the
frequency shift is substantial and the regular regime shrinks as o increases.

To test the validity of the new boundary we did simulations for w = 0.25
or Qa = 0.00132. The resulting strobe plots ere given in Fig. 5. We
used the same initial conditions as in the previous plots. The approximate
linear theory predicts a transition to essentially fully chaotic regime at about
g =~ 4.0 x 103 wherease the nonlinear theory at about g >~ 3.0 x 10~3. In the
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simulations this transition happens for g less than about 2.0 x 103, Here
again we see an improvement over the "linear boundary”.

5 Conclusions

We presented an analytical and numerical study of the driven pendulum
without resorting explicitly to Hamiltonian formalism and action-angle vari-
ables. We made some use of exact solutions and lowest order perturbative
solutions to gain some intuition on the physics of the pendulum. From the
preliminary comparisson with digital simulations we see that there is rea-
sonably good agreement with the boundary formula derived in section (3.2).
The frequency shift in the case of resonance is predicted also to few percent.
In a following note we will give a more exhaustive comparison of theory and
numerical simulations.
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A Appendix

We give here 2 brief summary of the definitions and relations between some
of the elliptic integrals and elliptic functions used in the text. The normal
elliptic integral of the first type is defined as follows:

v dt ¢ do
'/° 7(1 —12)(1 - k2) /o Vi-Ksinid (52)
-[‘ du' = u = sn~(y,k) = F(¢,k) (53)

with y = sin¢ and ¢ = aem(u,k). Note that the sn , or sine amplitude
elliptic function is the inverse of the elliptic integral of the first kind and
the em elliptic function its amplitude. With the introduction of two more
Jacobian functions

cn? =1 - sn?, (54)
dn? = 1 — k?sn? (55)

the remaining nine Jacobian functions are defined as ratios of the fundamen-
tal three.

Since occasionaly confusion arrises with the use of elliptic integrals and
their inverses we discuss briefly the relation between F(¢,k), sn(u,k) and
am(u, k) for real amplitudes and 0 < k < 1. Start with

u= F(¢,k) (56)

Since ¢ is an angle, it variesin the range —00 < ¢ < 0o. We only need to
deal with positive angles since F(—¢,k) = —F(¢,k). The elliptic integral F
is not a periodic function. However, as the angle ¢ increases (or decreases)
by =, it essentially "repeats itself” since

F(m= £ ¢,k) = 2mK & F(¢,k) (57)

with K = K(k) = F(x/2,k). There is thus a monotonic increase of 2K for
the dependent variable u everytime the angle increases by x. If ¢ where to
represent an angle in a physical system such as 2 pendulum, then every time

15



the angle increases by 27 we pick an additional 4X in the quantity u. Note
that K(0) = v/2 and thus

F(¢,0)=¢ (58)
We also point out that only the values for the elliptic integral for 0 < ¢ < 7/2
are important since F(¢ + 7/2,k) = 2K — F(x/2 — ¢,k). In other words
F(n%,k) = nK(k) and in the regions between these points u increases with
alternating positive and negative curvature.

We now come to the amplitude function since
¢ = am(u, k) (59)

Everytime u increases (or decreases) by 2K, am(u) increases (or decreases)
by . It is also 2 monotonic function that repeats itself with period 2K.

Finally we are left with the sine amplitude sn(u, k). Note that this is still
an inverse of the elliptic integral F(¢,k). It is related to am(u, k), but it is
only the periodic part of am since it is defined as y = sing, or

y = sing = sn(u, k) (60)

Note that because of the presence of a sin in the definition the periodicity
of this function is now 4K, since u + 2K results to ¢ + 7 which only changes
the sign in the sin¢ function.
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Strobe Plots for the Driven Pendulum
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Strobe Plots for the Driven Pendulum
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